2018-10-31から1日間の記事一覧

巡回群

生きとし生けるものみな意味なさげ 私たちは地球の影をみた 意味ない見ない 長い休みを取った 数学に耽っていた 物理で意味を持つこともあるのだろう 長い髪 かげろうface あてもなくたばこふかせば 舞う花々 咲く桜 飛花 飛生気

群 G の位数が 1 であれば、群は自明群と呼ばれる。元 a が与えられると、ord(a) = 1 と a が単位元であることは同値である。

群の位数と元の位数はよく群の構造の情報をもたらす。大ざっぱに言えば、位数の分解が複雑であればあるほど群も複雑である。 群 G の位数が 1 であれば、群は自明群と呼ばれる。元 a が与えられると、ord(a) = 1 と a が単位元であることは同値である。G の…

位数

数学の分野である群論において、群の位数(order) はその濃度、すなわち、その集合に入っている元の個数である。また、群の元 a の位数(order, ときに period)は am = e であるような最小の正の整数である(ただし e は群の単位元を表し am は a の m 個の…

体は演算に関して閉じている。体 の拡大体 は, 上のベクトル空間になっています.

ある体 に,幾つかの元を付け足すことで, を含む体 を作れるとき, を の 拡大体 (もしくは単に 拡大 )と呼びます. 群論では,群の部分群を考えることに興味があり,正規部分群,中心,固定部分群など,部分群に関する色々な話題がありました.一方,体論…

既約

アイゼンシュタインの既約判定法(アイゼンシュタインのきやくはんていほう、英: Eisenstein's criterion)は整係数の多項式が有理数体 上で既約であるための十分条件を与える定理である。ゴットホルト・アイゼンシュタインが1850年に発表した論文が由来[1]…

多項式の求根は古代ギリシアの時代より重要な問題であった。しかしいくつかの多項式、例えば X2 + 1 のようなものは実数体 R の範囲で考える限りにおいて根を持たない。そのような多項式に対する分解体の構成は、新たな体の中に多項式の根を求めることを可能にするものである。

多項式の求根は古代ギリシアの時代より重要な問題であった。しかしいくつかの多項式、例えば X2 + 1 のようなものは実数体 R の範囲で考える限りにおいて根を持たない。そのような多項式に対する分解体の構成は、新たな体の中に多項式の根を求めることを可能…

K の拡大体 L が、K 上の多項式からなる適当な集合に対して、同時にそれら全ての多項式の(それを一次式の積に分解することができるという意味で)分解体となっているとき、L は K の正規拡大であると言う。

抽象代数学において、与えられた多項式の分解体(ぶんかいたい、英: splitting field)とは、その多項式を一次式の積に因数分解 (splitting) できるような係数体の拡大体を言う。特にそのような拡大体のうち拡大次数(英語版)が最小となる最小分解体 (small…

{\begin{matrix}K\\|\\k\end{matrix}} (可換)体の組 K, k が与えられるとき、体の拡大 K/k [注釈 1]とは、k は K に集合として含まれ[注釈 2]、k の体構造が K の体構造の制限として得られる構造に一致していることをいう。またこのとき、k は K の部分体(ぶぶんたい、subfield)、基礎体(きそたい)あるいは下にある体であるといい、K は k の拡大体(かくだいたい、extension field)あるいは上にある体であるという。

(可換)体の組 K, k が与えられるとき、体の拡大 K/k [注釈 1]とは、k は K に集合として含まれ[注釈 2]、k の体構造が K の体構造の制限として得られる構造に一致していることをいう。またこのとき、k は K の部分体(ぶぶんたい、subfield)、基礎体(き…

非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼ぶ。

抽象代数学のとくに体論において体の拡大(たいのかくだい、英: field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環…