Dyフリー

 TDKは希土類であるネオジム(Nd)の含有量を半減させた高性能磁石を開発し、「CEATEC JAPAN 2014」(幕張メッセ、2014年10月7日~11日)で展示する。
 開発した磁石の最大エネルギー積は40MGOe、キューリー点(磁力を失う温度)は300℃。ネオジム焼結磁石ではそれぞれ35~55MGOe、300℃であるため、ほぼ同等の性能を持つ。しかも、同じ希土類のジスプロシウム(Dy)を含有しない「Dyフリー」である。

 組成は非公表。ただし、「ネオジム焼結磁石の延長線上にある磁石」(TDK)という。ネオジム焼結磁石は「Nd2Fe14B」という組成を持つ。このNdを別の金属で代替し、粒界構造などを工夫することでNdを半減させたとする。

 代替したのは「テルビウム(Tb)やDyではなく、資源枯渇や入手が困難になるリスクが少ない元素」(TDK)とした。製造については既存のネオジム焼結磁石とほぼ同じ工程で作れるという。

 現時点では量産の計画はない。Ndの価格が落ち着いており、Ndを半減させても価格を大きく下げることが難しいためとみられる。「資源調達リスクを減らすため、現在幾つかのアプローチで希土類を含まない磁石を研究している。今回、DyフリーでNdを半減できるという一定の成果が出たため、展示することにした」(TDK)という。

結晶粒界(けっしょうりゅうかい、Grain boundary)は、多結晶体において二つ以上の小さな結晶の間に存在する界面。

液体が冷却されるなどして固体になるとき、始めに多数の微小な結晶(結晶粒)が形成され、それぞれが別々に成長して多結晶体になる。このとき個々の結晶の方向を揃えておくことは困難である。一方、個々の粒子が単結晶からなる粉末を焼結させる過程においても、あらかじめ結晶の方向を揃えたり途中で結晶の方向を変えたりすることは困難である。いずれの場合も形成された多結晶体を構成する結晶は隣接する結晶と方向が異なっている。すなわち結晶と別の結晶との間に残された不連続な境界面が結晶粒界となる。

高温において結晶に応力が加わると、結晶に含まれる転位が二次元的に配列して一つの面を構成するようになる。この面を境にして結晶の方向が変化することから、この結晶はすでに二つの結晶に分かれていると見なすことができる。すなわちこの境界面が結晶粒界となる。

結晶粒界は転位の集合体とみなすことができるため、その性質を転位の性質から予測することができる。刃状転位が集合すると傾斜型の結晶粒界となり、らせん転位が集合するとねじれ型の結晶粒界となる。このとき転位の集合密度が大きいほど結晶方向の違いが大きくなる。結晶方向の違いが小さい結晶粒界は特に小傾角粒界または小ねじれ角粒界と呼ばれ、転位の集合体としての性質を示すが、結晶方向の違いが大きくなると単純に転位の集合体として性質を説明することはできなくなる。

結晶粒界が存在しない物体より結晶粒界が存在する物体の方がエネルギーが高い状態にあり、その差を結晶粒界の面積あたりに換算したものは粒界エネルギーと呼ばれる。小傾角粒界または小ねじれ角粒界において粒界エネルギーは両側の結晶の方向に差があるほど大きくなる。これは粒界エネルギーを転位の持つエネルギーの合計として記述できるためである。

結晶粒界は広い意味で格子欠陥の一種であり、点欠陥の集合体としての性質を示す。例えば拡散速度を大きくしたり電荷を帯びたりする。結晶粒界の影響によって結晶内部に新たな格子欠陥が形成されることもある。このため一般に、結晶内部より結晶粒界付近の方が格子欠陥濃度が大きく、従って拡散速度も大きい。結晶粒界における拡散現象は特に粒界拡散と呼ばれる。

液体から結晶成長する過程において不純物は結晶内部に取り込まれにくいため、結晶粒界には不純物が残留しやすい。また、液相焼結を行った場合には、しばしば結晶粒界にアモルファスなどの異物が残留する。

結晶粒界は結晶内部と比較して強度が小さいため、しばしば物体が破壊する起点となる。特に強度差が大きい場合、粒界に沿って破壊が進行することもある。また結晶粒界においてエッチングや腐食は加速される。この性質を利用して粒界を選択的にエッチングする方法によりその構造を観察することができる。

点欠陥は格子欠陥の一種である。結晶物質を構成する原子は規則的な配列(結晶格子)を持つが、完全に規則正しくならんでいるということはなく様々な欠陥が含まれている。そのうち、広がりを持たない点状の欠陥については点欠陥という。代表的な点欠陥には、不純物原子による置換(異種原子)、不純物が格子間に紛れ込んだもの(格子間原子)、原子空孔、フレンケル欠陥、アンチサイト欠陥がある。

アモルファス (amorphous)、あるいは 非晶質(ひしょうしつ)とは、結晶のような長距離秩序はないが、短距離秩序はある物質の状態。これは熱力学的には、非平衡な準安定状態である。

amorphous は、morphous(形を持つ)に「非」の意味の接頭辞 a‐ が付いた語(19世紀にスウェーデンのイェンス・ベルセリウスが非結晶の固体に対して命名した[1])。結晶は、明礬や水晶のようにそれぞれ固有の結晶形態を持っており、morphous である。しかし、急冷や不純物が混じった状態で出来た固体は、時間的空間的に規則的な原子配列が取れず非晶質となり、不定形である。

アモルファス状態は、非金属ではしばしば見られる状態である。しかし、金属にもアモルファス状態が存在することは、アメリカのポール・デュエイ (Pol Duwez) カリフォルニア工科大学教授らが1960年に発見した。