G のアデール形式の商に対する L2-空間の内で、保型表現は無限個の有限素点に対する p-進群の表現たちと無限素点に対する特定の展開環の表現たちとの無限テンソル積である。

その後に続く保型表現 (automorphic representation) の概念は、G としてアデール代数群としての代数群を採用することに技術的に大きな価値があることを証明した。アデールの使用は、合同部分群の族を一度に全部扱う方法であるという点で言えば、保型表現は上で導入した保型形式の概念に完全に含まれるというようなものではない。G のアデール形式の商に対する L2-空間の内で、保型表現は無限個の有限素点に対する p-進群の表現たちと無限素点に対する特定の展開環の表現たちとの無限テンソル積である。これがどれほど重要な転換かといえば、これによりヘッケ作用素カシミール作用素と同じレベルにおかれるということになるのである(これは函数解析学の観点からは自然であるけれども、数論にとってはそれほど明らかではない)。この考え方は、ラングランズ哲学の定式化の基礎を成している。

ポワンカレが1880年代までに初めて興味を持った数学の分野は保型形式論であった。ポワンカレはその保型形式を、優秀な教師として知られ、微分方程式論・函数論の研究を行っていた数学者ラザラス・フックスに因んでフックス函数と名づけている。ポワンカレは博士論文の一部としてそれらの函数の概念を精力的に研究した。ポワンカレの定義によると、保型函数とは、その定義域で解析的かつ、一次分数変換からなるある可算無限群の作用で不変となる函数である。したがって、保型函数は三角函数および楕円函数双方を一般化するものである。

ポワンカレは如何にしてフックス函数を発見したかを以下のように説明している。

For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions. I was then very ignorant; every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds; I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a class of Fuchsian functions, those which come from the hypergeometric series; I had only to write out the results, which took but a few hours.