多項式の求根は古代ギリシアの時代より重要な問題であった。しかしいくつかの多項式、例えば X2 + 1 のようなものは実数体 R の範囲で考える限りにおいて根を持たない。そのような多項式に対する分解体の構成は、新たな体の中に多項式の根を求めることを可能にするものである。

多項式の求根は古代ギリシアの時代より重要な問題であった。しかしいくつかの多項式、例えば X2 + 1 のようなものは実数体 R の範囲で考える限りにおいて根を持たない。そのような多項式に対する分解体の構成は、新たな体の中に多項式の根を求めることを可能にするものである。

F を体、p(X) は多項式環 F[X] の n-次多項式とする。多項式 p(X) の F 上の分解体を構成する一般の過程は、体の拡大の列 F = K0, K1, …, Kr−1, Kr= K で、各 Ki が p(X) の新たな根を含む Ki−1 の拡大となっているようなものを構成することである。p(X) は高々 n 個しか根を持たないのだから、この構成も高々 n 段階の拡大を想定すればよい。各 Ki に対する構成は以下のようにする:

p(X) を Ki 上の既約因子の積 f1(X)f2(X) … fk(X)に因数分解する。
そのうちの一次式でない既約因子 f(X) = fi(X)を選択する。
体の拡大 Ki+1/Ki を、f(X) の根体、すなわち剰余環 Ki+1 = Ki[X]/(f(X)) として構成する。ここに、記号 (f(X)) は f(X) の生成する Ki[X] のイデアルである。
p(X) が完全に分解されていなければ、Ki+1 に対して上記の操作 1–3 を繰り返す。
上記の剰余環の構成に用いる既約因子 fi の取り方は任意でよいが、取り方が異なれば得られる拡大体の列は異なることに注意せよ。それにも拘らず最終的に得られる最小分解体は同型の意味で一意である。

f(X) を既約にとることで、イデアル (f(X)) は極大イデアルとなり、従って剰余環 Ki[X]/(f(X)) が実は体となることが導かれる。さらに言えば、剰余環への自然な射影 π: Ki[X] → Ki[X]/(f(X)) は


を満たすから、π(X) は f(X) の(したがって p(X)の)根になる(根体の項も参照)。

各拡大における拡大次数 [Ki+1 : Ki] は既約因子 f(X) の次数に等しいから、求める拡大の次数 [K : F] は各拡大の次数すべての積 [Kr : Kr−1] … [K2 : K1][K1 : F] に等しく、高々 n! である。

上記の通り、剰余環 Ki+1 := Ki[X]/(f(X)) は f(X) が既約であるとき体を成す。この体の元は、cj ∈ Ki および α = π(X) として、


なる形に表すことができる(Ki+1 を Ki 上のベクトル空間と見れば、α の冪 αj (0 ≤ j ≤ n−1) がその基底を与えるということ)。

つまり Ki+1 の各元は α の次数高々 n の多項式と看做すことができる。Ki+1 の加法は多項式の加法によって、乗法は f(X) を法とする多項式の乗法で与えられる。すなわち、g(α), h(α) ∈ Ki+1の積 g(α)h(α) = r(α) は、Ki[X] において g(X)h(X)を f(X) で割った剰余 r(X) によって与えられる。

剰余 r(X) は多項式長除法によって計算することができるが、もっと直接的な簡約規則によっても r(α) = g(α)h(α) を直接計算することもできる。まず f(X) は体上の多項式であるから、それが最高次係数 1


と仮定して一般性を失わない。α が f(X) の根とすれば、


であり、積 g(α)h(α) の m ≥ n なる項 αm は


と簡約することができる。

この簡約規則を用いる例として、Ki = Q[X] を有理係数多項式環として、既約多項式 f(X) = X7 − 2 をとる。g(α) = α5 + α2, h(α) = α3 + 1 を Q[X]/(X7 − 2) の二元とすれば、f(X) による簡約規則は α7 = 2 だから、g(α)h(α) = (α5 + α2)(α3 + 1) = α8 + 2 α5 + α2 = (α7) α + 2α5 + α2 = 2 α5 + α2 + 2αと計算できる。

^ すべての元の二乗を計算すればわかるが、7 は 4 を法として 1 に合同でないことからもわかる。