第8周期

摂氏数億度の高温を用いる核融合は特に熱核反応(thermonuclear reaction)と呼ばれるが、熱核反応の燃料としては、原子核の荷電が小さく原子核同士が接近しやすい軽い核種で反応自体も速いといった理由から三重水素や二重水素といった水素の重い同位体が理想的と言われる[1]。

融合のタイプによっては融合の結果放出されるエネルギー量が多いことから水素爆弾などの大量破壊兵器に用いられる。また核融合炉によるエネルギー利用も研究されている。

核分裂反応に比べて、反応を起こすために必要な温度・圧力が高いため技術的ハードルが高く、現在のところ、水素爆弾核分裂反応を利用して起爆する必要があり、核融合炉は高温高圧の反応プラズマを封じ込める技術開発が困難を極めている。

核融合 - 超高温により起こる核融合。本項で詳説する。
衝突核融合 - 原子核を直接に衝突させて起こす核融合原子核の研究において使用される。
スピン偏極核融合 - 陽子と中性子の自転の角運動量のパラメータ(スピン)を制御する事により核融合反応を制御する。
ピクノ核融合 - 非常に高密度の星(白色矮星)の内部で起こっていると考えられている核融合反応。電子が原子核クーロン力を強く遮断して、低温の状態でも零点振動による量子トンネル効果により核融合が起こる。
ミューオン触媒核融合 - 負ミューオンは電子と電荷は同じだが約200倍の質量を持つので束縛軌道半径が約200分の1である。そのため、電子を負ミューオンに置き換えると原子核同士が接近しやすくなり核融合が起こりやすくなる。負ミューオンは消滅までに何度もこの反応に関与できるので触媒のように作用する。
常温核融合 - 室温で核融合が起こるとされた実験報告がなされた。

中心温度が15億 Kを超えると、炭素も核融合を始める(炭素燃焼過程)。さらに恒星が十分な質量を持っていれば、ネオン燃焼過程、酸素燃焼過程、ケイ素燃焼過程を経て安定した鉄56(最も安定な核種はニッケル62。詳細は鉄参照)が作られ、中心での核融合反応は終了する。星は内側から、鉄の核、ケイ素の球殻、酸素の球殻、ネオンの球殻、炭素の球殻、ヘリウムの球殻、水素の最外層からなる、タマネギ状の構造になり、中心以外の各層で核融合が進行する。

中心温度が100億 Kを超えると、黒体放射の光子のエネルギーが核子の結合エネルギーと同程度になるため、鉄の光分解が起こる。

56
Fe

13
4
He
+
4
n

124
MeV
{}_{{}}^{{56}}{\hbox{Fe}}\;\to \;{13}_{{}}^{{4}}{\hbox{He}}+{4}_{{}}^{{}}{\hbox{n}}-{124}{\hbox{MeV}}
この吸熱反応により中心の温度が下がり、それにより圧力も下がる。圧力が下がると星は収縮するが、収縮により温度が上がって光分解が進む。 繰り返されるこの過程により恒星は重力崩壊する。 中心部に物質が落下し、原子核に電子が取り込まれて陽子がニュートリノを放出して中性子が出来る。 中心に中性子の塊が出来、自身の縮退圧で支えられるようになると、外層から落下してきた物体は中性子の塊の表面で跳ね返され、超新星爆発を起こす。最近の研究によると鉄より重い元素の約半数は、超新星爆発のときの核融合で作られ、残り半数はS過程で作られる。

なお、この時に残った中性子の塊は中性子星となる。もし中性子の塊が自身の縮退圧で支えられない状況になると、ブラックホールになる。超新星爆発中性子星が残らないケースも研究されている。

光崩壊 (英: Photodisintegration) は非常に高エネルギーのガンマ線原子核に作用することによって原子が崩壊する過程のこと。高エネルギーのガンマ線は光子ともよばれ、ここから光崩壊と呼ばれ、光壊変や光分解ともよばれる。原子核ガンマ線を受けることで励起状態になることが原因であり、原子核を構成する陽子や中性子を放出することで即座に崩壊する。原子核の中に侵入したガンマ線によって一粒の陽子や中性子が効果的に叩きだされる。

この過程は本質的には軽い元素が高温で融合して重い元素を生成し、エネルギーを解放する核融合とは逆の過程である。光崩壊は原子核が鉄より軽い時は吸熱性であり、原子核が鉄より重い時には放熱を行う。光崩壊は少なくとも超新星で起きるp過程を通して生成される重く陽子に富んだ元素の一部を合成する原因である。

原子核物理学における中性子捕獲(ちゅうせいしほかく、英: neutron capture)とは、核反応の一種で、中性子原子核に吸収されたのちにガンマ線を放出する現象〔(n, γ)反応〕を言う。

原子炉の内部のように中性子束の小さな環境では、1個の中性子原子核に捕獲される。例として、金の原子核(金197)に中性子が照射されると高い励起状態の金198が作られ、その後すぐにガンマ線光子を放出して基底状態の金198に崩壊する。この過程では原子核の質量数が1増える。この過程を核反応式で書くと以下のようになる。

197
A
u
(
n
,
γ
)
198
A
u
{\displaystyle {\rm {{}^{197}{\rm {Au}}(n,\gamma ){}^{198}{\rm {Au}}}}}
中性子が捕獲される反応を特に熱中性子捕獲 (thermal neutron capture) と呼ぶ。

金198はベータ崩壊を起こして水銀198に変わる。この過程では原子番号原子核内の陽子数)が1増える。

中性子束は、自然現象と化学実験による人為的な現象の両方で、中性子が安定した割合で原子核粒子に衝撃を与える場合に用いられる。この場合、不安定な放射性同位体を含む異なった同位体や、単に安定な元素を産む。中性子束は一定時間単位に一定空間を通過する中性子の数の尺度として用いることがある。よく使われる尺度は中性子/cm2秒である。

D + T

\to 4He + n (14MeV)
反応条件が緩やかで、最も早く実用化が見込まれている反応である。核融合炉として使用する場合トリチウムの入手性に課題がある。トリチウムは、自然界においては、大気の上層でわずかに生成されるのみであり、半減期の短い放射性物質であるため事実上採取は不可能である。また、高速中性子が生成するため、炉の材質も検討が必要となる。現在検討されているトリチウム入手法は、核融合炉の周囲をリチウムブランケットで囲み炉から放出される高速中性子を減速させつつ核反応を起こし、

6Li + n

\to T + 4He + 4.8MeV
7Li + n

\to T + 4He + n - 2.5MeV
トリチウムを得ることである。このときブランケットは高速中性子を減速して遮蔽し、燃料を生産し、反応熱を取り出すと言う3つの役割をすることになる。欧州トーラス共同研究施設およびTFTRにおいてはこの反応を主反応とするような実験が行われた。

ブランケット(英: blanket)とは核融合炉の内壁を構成する装置のひとつ。冷却、燃料生産、遮蔽の3つの機能を担う。高速増殖炉においても、燃料増殖と遮蔽のために置かれる、ウラン238の燃料棒の事をブランケット燃料と呼ぶ。

プラズマ内で生じたエネルギーの80%は高速中性子の形で炉壁に衝突してくる。この高エネルギー粒子である高速中性子を受け止めて背後への漏れを防ぐとともに、そのエネルギーを熱に変えて発電のエネルギーとするための、主な炉壁を構成する重要な装置である。同時にリチウム6を核変換して燃料となる三重水素トリチウム)を生産する機能を合わせ持つことも計画されている。

高速中性子原子番号の大きな、つまりは原子核が重く大きな元素の原子核には相互作用をあまりせず、高速中性子自身と同程度の規模の粒子、つまり原子番号がきわめて小さく原子核が軽くごく小さな元素の原子核に反応する傾向が強い。

このため実際に高速中性子を主に受け止めるのは、ブランケットの支持構成材の原子核ではなく、ブランケット内を流れる高圧冷却水の水素原子や酸素原子と、下記の燃料生産で説明するリチウムの原子である。

この高圧冷却水は融合炉外部より冷却水循環系の配管やブランケット接続部を経由してブランケット内に導かれ、ブランケット内の曲がりくねった配管を流れる間に周囲の高熱を冷やし、自身は熱を帯びる。高水圧に加圧されているため配管内では沸騰することなくやがて十分に周囲の熱を奪ってブランケット接続部より冷却水循環系の帰路を通じて出て行く。この高圧高温の冷却水は、炉外で直接かまたは一度熱交換器(蒸気発生器)を通じて蒸気を発生させ、発電タービンを回して発電機を回転させ発電する。タービンを回した冷却水は復水器で水に戻されるか、または設計によっては再び熱交換器(蒸気発生器)に戻って加熱され低圧タービンを回してから復水器で水に戻される。復水器で十分に冷やされた冷却水は、循環ポンプにより加圧されて、冷却水循環系を通じて再び融合炉の冷却に向かう。

このしくみは、水を高速中性子の減速材として使いながら同時に冷却材として利用する点で、現在の軽水炉型の原子炉と全く同じである。

核融合炉の燃料として有力視されているのが重水素三重水素である。重水素は自然水中に含まれる水素の内の0.015%から抽出することでも生産が可能であるが、三重水素は自然界には検出限界程度の割合でしか存在せず抽出は不可能である。これらの事情から何らかの方法で三重水素を作らなければならない。

リチウム6を中性子にさらすとヘリウム4と三重水素原子核が得られるので、ブランケット内に天然リチウム(リチウム6の天然存在比は約7.6%)を置き、ヘリウム4と三重水素のガスを発生させる。これを取り出して核融合炉の燃料として使用することが考えられている。最初の核融合ではおそらく核分裂炉で三重水素を生産しなければならないが、いちど核融合での運転が軌道に乗れば重水素とリチウムの供給だけで、三重水素の供給は必要がなくなる。また、1つの中性子をリチウムに当てて核分裂させると中性子が2つ出てくるので、中性子が倍増できるためこのことも効率をよくする。さらに中性子を発生させてエネルギー生産効率を高めるために、それに適した元素による中性子増倍材も検討されている。

三重水素原子は他の小さな原子同様に多くの物質中に浸透・透過してゆくため、この放射性物質三重水素ガス回収系の途中や冷却水循環系に浸透した後で逃げ出したりしないように、設計時に考慮する必要がある。また重水素三重水素、ヘリウムの各原子・分子は周辺部材に浸透することで水素脆化やヘリウム脆化を引き起こすのでこれらのガスに長期間曝される力学的負荷の高い部材は高分子化合物等の被覆処理などの対応が必要となる。

ブランケット・モジュールは内部に2つの空間を備えた支持構造体で、リチウムの交換や金属の劣化などに対応するために炉壁から取り外して交換が可能な形態となる。プラズマ側の空間にはベリリウムなどの中性子増倍材をペブルと呼ばれる微小球(直径1ミリメートル以下)の形で収め、プラズマから離れた側の空間には酸化リチウムなどのトリチウム増殖材を同じくペブルで収める。 いずれの空間にも、隙間にヘリウムなどの不活性ガスを流し、また多くの冷却パイプを通わせ中に減速材と冷却材を兼ねる高圧水を流す。ブランケットの構造体や冷却パイプなどの部材は中性子に対して放射化やスウェリングの影響を受けにくい材質を選ぶ必要がある。この構造体は強い磁場の中で強力な力を受けるので、力学的にも強固でなければならない。またこの構造体は高温の環境で機能しなければならないので、単に溶けないだけでなく大きな歪みや割れを生じてはならない。

ブランケット・モジュールのプラズマに直接接する面は第一壁と呼ばれ、最も激しい粒子線に曝されるため部材選択に関して重要な技術開発の対象である。

支持構造体(低誘導放射化フェライト鋼など)
中性子増倍材(ベリリウムなど)
トリチウム増殖材(酸化リチウムなど)
冷却(重水素回収)ガス(ヘリウムなど)
冷却パイプ(ステンレスなど)
減速材・冷却材(水)
配管接続部や壁面固定部
冷却材はブランケットを出た後で熱エネルギーが発電のための使われ、十分に冷めた後で再びブランケットへ送られ再び高温からブランケットを守る。冷却ガスは三重水素回収系を経て、おそらく十分に冷めた後で再びブランケットへ送られる。ただし実験炉であるITERでは発電は行なわれないため、熱エネルギーは大気中へ捨てられる。

ブランケットには上記のように複数の機能を併せ持つものもあれば、遮蔽ブランケット、増殖ブランケット、発電ブランケットと単機能のものも考えられている。上図はその開発過程のテスト用のブランケットの概念を示したものである。

核融合反応でくっついた原子核は、まず複合核(Compound Nucleus)を形成します。この原子核は非常に「熱い」原子核であり、中性子や陽子、アルファ粒子などを放出(蒸発:evaporation)し、その後ガンマ線を放出することでエネルギーの低い「冷たい」状態になります。この放出される粒子やガンマ線を測定することで、原子核がどのような状態を形成したのかを調べることができます。

熱い融合反応は、アクチノイド原子番号89から103までの元素)を標的にして比較的軽い重イオン(原子番号10~20)ビームを照射し核融合を起こすことで、冷たい融合反応より励起エネルギーの高い熱い状態の複合核(励起エネルギーが 30~50 MeV)を経由して超重元素を合成する方法。