代数的位相幾何学は位相空間を調べるのに抽象代数学由来の道具を用いる数学の一分野である[8]。その基本的な最終目的は同相を除いて位相空間を分類する代数的不変量を求めることであるが、普通はホモトピー同値を除いて大まかな分類を得ることが目的となる。
そのような不変量として最も重要なのがホモトピー群、ホモロジー群およびコホモロジー群である。
代数的位相幾何学では位相的問題を調べるのに代数学を用いることが主だけれども、位相を用いて代数的問題を解くということも時には可能である。例えば代数的位相幾何学で「自由群の任意の部分群がまた自由となること」を簡便に示すことができる。