曲線の回転数 (winding number) を極座標系を使って定義できる。

数学において、与えられた点の周りの平面の閉曲線の回転数 (winding number) は曲線がその点の周りを反時計回りに周った総回数を表す整数である。回転数は曲線の向き(英語版)に依存し、曲線が点の周りを時計回りに周れば負の数である。

回転数は代数トポロジーにおいて研究の基本的な対象であり、ベクトル解析、複素解析幾何学トポロジー微分幾何学、弦理論を含む物理、において重要な役割を果たす。

xy 平面の曲線はパラメトリック方程式によって定義される:


パラメータ t を時間と考えれば、これらの方程式は t = 0 と t = 1 の間の平面の対象の動きを特定する。この動きの道は関数 x(t) と y(t) が連続である限り曲線である。この曲線は対象の位置が t = 0 と t = 1 で同じならば閉じている。

そのような曲線の回転数 (winding number) を極座標系を使って定義できる。曲線は原点を通らないと仮定して、パラメトリック方程式を極形式に書きなおすことができる:


関数 r(t) と θ(t) は r > 0 で、連続であることが要求される。最初と最後の位置は同じなので、θ(0) と θ(1) は 2π の整数倍異ならなければならない。この整数が回転数である:


これは xy 平面において原点の周りの曲線の回転数を定義する。座標系を変えることで、この定義を任意の点 p の周りの回転数を含むように拡張することができる。

道の回転数を道自身の接線に関して考えることもできる。時間でフォローされた道として、これは速度ベクトルの原点についての回転数になる。この場合右に描かれた例は回転数 4(あるいは −4)をもつ、なぜならば小さいループが数えられるからだ。

これははめ込まれた道に対して(すなわち微分がどこでも消えない微分可能な道に対して)のみ定義され、tangential Gauss map の degree である。

これは turning number と呼ばれ、全曲率(英語版)を 2π で割ったものとして計算することができる。

 

 

粒子とは異なり、閉弦はまた余剰次元に巻き付くこともできる。そのような状態を巻き付きモードと言う。弦は、純粋な運動量 p をコンパクト化された次元の中でも持っている。T-双対は、D-ブレーンに作用すると、その次元を +1 するか -1 するように作用する。

粒子とは異なり、閉弦はまた余剰次元に巻き付くこともできる。そのような状態を巻き付きモードと言う。巻き付きモードを励起するエネルギーは、半径 R に比例して量子化されているので、半径が小さくなるにつれて、巻き付きモードが小さくなるので、半径がゼロとなる極限ではもはや量子化されない。一方、半径が大きくなると巻き付きモードを励起することに使うエネルギーは大きくなる。このカルツァ・クラインモードの振る舞いは反対で、巻き付きモードとカルツァ・クラインモードを入れ替えると、半径が小さいと大きい閉弦の振る舞いは同じになる。半径 R での物理と半径 α'/R での物理が同じになる。この関係がT-双対の例である。

 

 

 

様々な弦理論の小さな距離と長い距離の間の関係の古典的記述[1]が、それらの特別な場合となる。

T-双対(T-duality)は、様々な弦理論の小さな距離と長い距離の間の関係の古典的記述[1]が、それらの特別な場合となるという場の量子論の対称性である。[2] ブッシャー(T. H. Buscher)の論文の中でこの話題の議論が始まり、マルティン・ロセック(英語版)(Martin Rocek)とエリック・ヴァーリンデ(英語版)(Erik Verlinde)によりさらに深められた。T-双対は、通常の素粒子物理学の中には存在しない。弦が粒子の動きとは点粒子とは基本的に異なる方法で時空を伝播する。T-双対が理解される以前には、関連がないと考えられていた異なる弦理論を関連づける。T-双対は、第二超弦理論革命(英語版)の中で進化した。[3]

弦理論は、普通の空間次元 3と時間次元 1に加えて、余剰次元を予言する。これらの余剰次元の異なるサイズや形は、4次元の低エネルギー物理に現れる異なる力や異なる粒子となるので、異なった形の宇宙は異なった物理を持つであろう。しかし、これらの多くの幾何学が同じ物理を結果し、これがT-双対の基礎となっている。

シャノンエントロピー

結果的に、彼はそのタイプの不等式を得て終わった... 行列理論の実際の方程式を見てこれらの交換子のどれもがゼロではないことを除いて... 上述の最後に示された不等式は明らかに量子重力の帰結にはなりえない。なぜならそれはGに全く依存していないためである! しかしながら、G→0 極限においては、平坦ユークリッド背景時空における非重力的物理学が再現されねばならない。Hoganの規則は正しい極限を持たないため、正しくなりえない。

ブラックホールエントロピー

熱い気体のようなエントロピーを持つ物体は巨視的にはランダムな振る舞いをする。ある既知の古典場の配置のエントロピーはゼロである:電場および磁場、または重力波についてランダムさはない。ブラックホールアインシュタイン方程式の厳密解であるので、それらはいずれもいかなるエントロピーも持たないと考えられていた。

しかしヤコブ・ベッケンシュタインはこれは熱力学第二法則の破れを導くことを指摘した。もし熱い気体をブラックホールに投げ入れたら、それは事象の地平面を通過し、その時点でそのエントロピーは消失するだろう。ひとたびブラックホールがその気体を吸収し定常状態に落ち着けばその気体のランダムな性質はもはや見られなくなるだろう。第二法則はもしブラックホールが実際にランダムな物体である場合にのみ復旧させることができる。このときその気体が持っていたエントロピー以上にエントロピーが増加する。

ベッケンシュタインはブラックホールは最大エントロピー物体でそれらは同じ体積のどんな物体よりも大きなエントロピーを持つと論ずる。半径Rの球内において、相対論的気体のそのエントロピーはそのエネルギーの増加とともに増加する。その唯一の限界は重力的である。つまり、エネルギーが過剰にある場合はその気体はブラックホールへと崩壊する。ベッケンシュタインはこれを用いて空間のある領域におけるエントロピーの上限を定めた。この上限値はその領域の面積に比例する。彼はブラックホールエントロピーは事象の地平面の面積に直接比例すると結論付けた[7]。

それより早くにスティーヴン・ホーキングブラックホールの集団の事象の地平面の総計は常に時間とともに増加することを示した。その地平面は光的な測地線によって定義される境界である。すなわち、それはちょうどぎりぎり脱出することのできないこれらの光線である。もし周辺の測地線がそれぞれに向かって動き始めるとそれらは最終的には衝突する。その衝突地点ではそれらの延長はブラックホールの内部となる。そのため測地線は常にお互い離れるように動いており、その境界、つまりその地平面の面積を生成する測地線の数は常に増加する。ホーキングの結果は熱力学第二法則エントロピー増大の法則)とのアナロジーブラックホール熱力学の第二法則と呼ばれる。しかし当初は彼はこのアナロジーをあまり真面目にはとらえていなかった。

ホーキングはもし地平面の面積が実際のエントロピーであるならブラックホールは放射しなければならないことを知っていた。ある熱系に熱が加わったとき、そのエントロピーの変化は質量=エネルギーを温度で割った値の増加分である:


もしブラックホールエントロピーが有限なら、それらの温度もまた有限のはずである。特に、それらは光子の熱的気体と平衡状態に達するはずである。これはブラックホールは光子を吸収するであろうだけでなく、それらはまた詳細釣り合いを保つために光子を適当な量だけ放射するであろう。

場の方程式の時間依存解は放射を行わない。なぜなら時間独立背景はエネルギーを保存するためである。この原理に基づいて、ホーキングはブラックホールは放射しないことを示すことに着手した。しかし意外なことに、慎重な解析によって有限の温度である気体と平衡状態に達するちょうど適切な方法でブラックホールは放射することを示す結果が得られた。ホーキングの計算では比例定数は1/4に固定されていた。すなわち、ブラックホールエントロピープランク単位でその地平面の面積の四分の一である[8]。

そのエントロピーは巨視的な記述を変えないままある系の微視的な配置を調整することで微視的状態(英語版)の数の対数に比例する。ブラックホールエントロピーは深遠な謎である — それはブラックホールの状態の数の対数はその内部の体積ではなくその地平の面積に比例することを言う[9]。

後に、ラファエル・ブーソ(英語版)はヌル・シート (null sheet) に基づいてその境界の共変バージョン(英語版)を提案した。

1995年、サスキンドと共同研究者のTom Banks, en:Willy Fischler, およびen:Stephen Shenkerらは荷電点ブラックホール、すなわちタイプII超弦理論のD0ブレーンに関するホログラフィックな記述を用いて新しいM理論の定式化を発表した。彼らが提唱した行列理論は当初、en:Bernard de Wit, en:Jens Hoppe, そしてen:Hermann Nicolaiによる11次元超重力内の二つのブレーンを記述していた。後にこの著者たちは同じ行列模型を特定の制限の下での点ブラックホールの動力学の記述として解釈し直した。ホログラフィによって、これらのブラックホールの動力学はM理論の完全な非摂動的 (en) 定式化を与えるという結論が導かれた。1997年、フアン・マルダセナはより高次元の物体のホログラフィックな記述、3+1次元のタイプIIメンブレーンを最初に与えた。これは長い間の難問であった、あるゲージ理論に対応する弦理論による記述を発見した。これらの進展は同時に、弦理論がいかにして量子色力学と関係するかを説明した。

1995年、サスキンドと共同研究者のTom Banks, en:Willy Fischler, およびen:Stephen Shenkerらは荷電点ブラックホール、すなわちタイプII超弦理論のD0ブレーンに関するホログラフィックな記述を用いて新しいM理論の定式化を発表した。彼らが提唱した行列理論は当初、en:Bernard de Wit, en:Jens Hoppe, そしてen:Hermann Nicolaiによる11次元超重力内の二つのブレーンを記述していた。後にこの著者たちは同じ行列模型を特定の制限の下での点ブラックホールの動力学の記述として解釈し直した。ホログラフィによって、これらのブラックホールの動力学はM理論の完全な非摂動的 (en) 定式化を与えるという結論が導かれた。1997年、フアン・マルダセナはより高次元の物体のホログラフィックな記述、3+1次元のタイプIIメンブレーンを最初に与えた。これは長い間の難問であった、あるゲージ理論に対応する弦理論による記述を発見した。これらの進展は同時に、弦理論がいかにして量子色力学と関係するかを説明した。

ベッケンシュタインのこの話題に関する概説"二つのエントロピーの物語" (A Tale of Two Entropies) はホイーラーのトレンドが持つ潜在的に深淵な示唆を記述している。その一つは、それまで予期されていなかった情報科学と古典物理の世界のつながり示したことである。このつながりは、アメリカ人応用数学クロード・シャノンによるシャノン・エントロピーとして現在知られている今日最も使われている情報量の尺度を導入した1948年の影響力の大きい論文が発表されてからしばらくして最初に記述された。情報量の客観的な尺度としてシャノン・エントロピーは非常に有用で、携帯電話からモデム、ハードディスクドライブ、そしてDVDまで現代のデータ通信・記録技術の設計はシャノン・エントロピーに基づいている。

欧州宇宙機関により2002年に打ち上げられた宇宙望遠鏡INTEGRALが2004年に観測したガンマ線バーストen:GRB 041219Aの2011年の解析の結果、Craig Hoganのノイズは下は10−48mのスケールまで不在であり、Hoganによる10−35mスケールに見つかるという予想と反しており、GEO 600計器の測定では10−16mスケールに見つかっている[17]。Hogan効果の探索は2012年も継続されている[18]。

ヤコブ・ベッケンシュタインもまたホログラフィック原理を卓上光子実験で検出できると主張している[19]。
 

ベッケンシュタインはブラックホールは最大エントロピー物体でそれらは同じ体積のどんな物体よりも大きなエントロピーを持つと論ずる。

ホログラフィック原理(ホログラフィックげんり、holographic principle)は、空間の体積の記述はある領域の境界、特にみかけの地平面(英語版)のような光的境界の上に符号化されていると見なすことができるという量子重力および弦理論の性質である。ヘーラルト・トホーフトによって最初に提唱され、レオナルド・サスキンドによって精密な弦理論による解釈が与えられた[1]。サスキンドはトホーフトとチャールズ・ソーン(英語版)のアイデアを組み合わせることからこの解釈を導いた[1][2]。ソーンは1978年に弦理論はより低次元の記述が可能であり、ここから現在ホログラフィック的と呼ばれるやり方で重力が現れることを見出していた[3]。

より大きなより思弁的な意味では、この理論は、全宇宙は宇宙の地平面上に「描かれた」2次元の情報構造と見なすことができ、我々が観測する3次元は巨視的スケールおよび低エネルギー領域での有効な記述にすぎないことを示唆する。宇宙の地平面は、有限の領域で時間とともに膨張していることもあり、数学的には正確に定義されていない[4][5]。

ホログラフィック原理はブラックホール熱力学から着想された。ブラックホール熱力学ではどんなスケールの領域でも最大エントロピーはその領域の半径の三乗ではなく二乗に比例することを示唆する。ブラックホールの場合、ブラックホールに落ち込んだすべての物体が持つ情報は事象の地平面の表面の変動に完全に含まれることが推測される。ホログラフィック原理はブラックホール情報パラドックスを弦理論の枠組み内で解決する[6]。

 

 

アニメの最初から最後まで順番に描いていく必要はなく、とにかくイメージをどんどんコンテに落とし込んでいくのがコツです。すると、次にどのような技法を使おうか、などがぼんやり見え始める。

「フレームレート」とは何なのでしょうか?映像分野などではよく聞きますが…。

簡単に言えば、「1秒間に使う画像の枚数」です。映像は画像の連なりなので、テレビドラマなどの実写作品では1秒間に30枚近い画像を使います。映画などでは24 枚が標準的です。

目安としては1秒間に6~8枚あれば動いて見えると思います。

ネタ出しが終わっている前提で、かつどれくらいの長さの動画を作るかによると思います。仮に10秒の動画とすると10秒×8枚=最大80枚をどれくらいの作業スピードで作れるかが重要になります。

時間的には、やはり作画が一番労力かかりますから、アニメとその人の作業スピード次第でしょうか。そこから逆算して、組み立てていく感じです。ここらへんで、彩色にどこまで手を入れるべきか考えていてもいいですね。

それに、CLIP STUDIO PAINTを使えばさらに効率よく作業ができると思います。
CLIP STUDIO PAINTセルシス社のアニメ、マンガ、イラスト製作ソフト。