曲線の回転数 (winding number) を極座標系を使って定義できる。

数学において、与えられた点の周りの平面の閉曲線の回転数 (winding number) は曲線がその点の周りを反時計回りに周った総回数を表す整数である。回転数は曲線の向き(英語版)に依存し、曲線が点の周りを時計回りに周れば負の数である。

回転数は代数トポロジーにおいて研究の基本的な対象であり、ベクトル解析、複素解析幾何学トポロジー微分幾何学、弦理論を含む物理、において重要な役割を果たす。

xy 平面の曲線はパラメトリック方程式によって定義される:


パラメータ t を時間と考えれば、これらの方程式は t = 0 と t = 1 の間の平面の対象の動きを特定する。この動きの道は関数 x(t) と y(t) が連続である限り曲線である。この曲線は対象の位置が t = 0 と t = 1 で同じならば閉じている。

そのような曲線の回転数 (winding number) を極座標系を使って定義できる。曲線は原点を通らないと仮定して、パラメトリック方程式を極形式に書きなおすことができる:


関数 r(t) と θ(t) は r > 0 で、連続であることが要求される。最初と最後の位置は同じなので、θ(0) と θ(1) は 2π の整数倍異ならなければならない。この整数が回転数である:


これは xy 平面において原点の周りの曲線の回転数を定義する。座標系を変えることで、この定義を任意の点 p の周りの回転数を含むように拡張することができる。

道の回転数を道自身の接線に関して考えることもできる。時間でフォローされた道として、これは速度ベクトルの原点についての回転数になる。この場合右に描かれた例は回転数 4(あるいは −4)をもつ、なぜならば小さいループが数えられるからだ。

これははめ込まれた道に対して(すなわち微分がどこでも消えない微分可能な道に対して)のみ定義され、tangential Gauss map の degree である。

これは turning number と呼ばれ、全曲率(英語版)を 2π で割ったものとして計算することができる。