より一般的なホッジラプラシアン

ラプラス作用素の概念は、リーマン多様体上で定義されたラプラス=ベルトラミ作用素(英語版)と呼ばれる楕円型作用素に一般化することができる。同様にダランベール作用素は擬リーマン多様体上の双曲型作用素に一般化される。ラプラス=ベルトラミ作用素函数に適用すれば、その函数のヘッセ行列のトレース


が得られる。ただし、トレースは計量テンソルの逆に関して取るものとする。ラプラス=ベルトラミ作用素を同様の式でテンソル場に作用する作用素(これもまたラプラス=ベルトラミ作用素と呼ばれる)に一般化することができる。

ラプラス作用素の別な一般化として、擬リーマン多様体上で定義される外微分を用いた「幾何学者のラプラシアン」と呼ばれる


を考えることもできる。ここで d∗は余微分(英語版)で、ホッジ双対を使って書くこともできる。これが上に述べた「解析学者のラプラシアン」とは異なるものであることには注意すべきである。そのことは大域解析学の論文を読むときには常に気を付けねばならない。 より一般に、微分形式に対して定義される「ホッジ」ラプラシアン α は


と書ける。これはまたラプラス=ドラーム作用素(英語版)とも呼ばれ、ヴァイツェンベック不等式(英語版)によってラプラス=ベルトラミ作用素と関係する。

ラプラシアンを適当な仕方によって非ユークリッド空間に一般化することができて、それには楕円型、双曲型、超双曲型(英語版)などが可能である。

ミンコフスキー空間におけるラプラス=ベルトラミ作用素ダランベール作用素


となる。これは考える空間上の等長変換群のもとで不変な微分作用素であるという意味においてラプラス作用素の一般化となるものであり、時間不変函数へ制限する限りにおいてはラプラス作用素に帰着される。ここでは計量の符号を作用素の空間成分に関して負符号を許すようにしてあることに注意(高エネルギー粒子物理学ではこう仮定するのが普通)。ダランベール作用素波動方程式に現れる微分作用素であるという理由で波動作用素と呼ばれることもある。これはまたクライン=ゴルドン方程式(質量の無い場合には波動方程式に帰着される)の成分でもある。

計量における余分な因子 c は、物理学において空間と時間を異なる単位で測っている場合に必要となるものである(例えば同様のことは x-方向をメートルで y-方向をセンチメートルで測ったりするような場合にも出てくる)。実際、理論物理学では方程式を簡単にする目的で、自然単位系などの単位系のもと c = 1 として扱うのがふつうである。