Ω が超球面であるときの、ラプラス作用素の固有函数は球面調和函数と呼ばれる。

ラプラス作用素のスペクトルは、対応する固有函数 f が


を満たすようにできる固有値 −λ の全てからなる[要検証 – ノート]。上の式はヘルムホルツ方程式と呼ばれるものである。 Ω を Rn の有界領域とすれば、ラプラス作用素の固有函数全体はヒルベルト空間 L2(Ω) の正規直交基底を成す。この結果は本質的にはコンパクト自己随伴作用素に関するスペクトル定理をラプラス作用素の逆作用素(これはポワンカレ不等式およびコンドラコフ埋蔵定理(英語版)によってコンパクト)に適用することにより従う[3]。固有函数が無限回微分可能函数であることも示せる[4]。この結果はより一般に、任意の境界付きコンパクトリーマン多様体上のラプラス=ベルトラム作用素について成り立ち、また実際に有界領域上滑らかな係数を持つ任意の楕円型作用素に対するディリクレ固有値問題についても正しい。Ω が超球面であるときの、ラプラス作用素の固有函数は球面調和函数と呼ばれる。