現在ではラプラス方程式と呼ばれる方程式 ∆f = 0 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。ラプラス作用素は、合同変換に対して不変な微分演算子の中で、自明なもの(=恒等的に0を対応させる微分演算子)を除けば最も簡単なものである。ラプラス作用素それ自身は拡散方程式によって記述されるような、科学密度の流入や漏出を表す点を含む非平衡拡散に対する物理的解釈を持つ。

数学におけるラプラス作用素ラプラスさようそ、英: Laplace operator)あるいはラプラシアン(英: Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では ∇·∇, ∇2, あるいは ∆ で表されるのが普通である。函数 f の点 p におけるラプラシアン ∆f(p) は(次元に依存する定数の違いを除いて)点 p を中心とする球面を半径が増大するように動かすときの f(p) から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系や球座標系などの座標系においても有用な表示を持つ。

ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 ∆f = 0 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。

微分方程式においてラプラス作用素は電気ポテンシャル、重力ポテンシャル、熱や流体の拡散方程式、波の伝搬、量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フローの流束密度を表す。

ラプラス作用素はn 次元ユークリッド空間上の函数 f の勾配 ∇f の発散 ∇· として定義される二階の微分作用素である。つまり、f が二回微分可能実数値函数ならば f のラプラシアン


 
(1)
で定義される。ただし、あとの記法は形式的に と書いたものである。あるいは同じことだが、f のラプラシアンは直交座標系 xi における非混合二階偏導函数の全てにわたる和


 
(2)
としても書ける。二階の微分作用素として、ラプラス作用素はCk 級函数を Ck − 2 級の函数へ写す (k ≥ 2)。つまり、式 1 (あるいは同値な 2) は作用素 ∆: Ck(Rn) → Ck − 2(Rn) を定める。あるいはより一般に任意の開集合 Ω に対して作用素 ∆: Ck(Ω) → Ck − 2(Ω) を定める。

ラプラス作用素は、合同変換と可換である。すなわち、任意のC∞級関数φ : Rn → Rと任意の合同変換Tに対し、


が成立する[1]。

しかもラプラス作用素は、上記の性質を満たす非自明な微分演算子で最も簡単なものとして特徴づけることができる。これを説明する為、記号を導入する。Rを実数の集合とし、n個の実数からなる組の集合をRnとする。x=(x1,…,xn)∈Rnとn個の非負整数の組α=(α1,…,αn)に対し、



と表記する。微分演算子


が任意のC∞級関数φ : Rn → Rと向きを保つ任意の合同変換Tに対し、


が成立していたとする。このとき、実数係数の1変数多項式p(X)=Σm umXmが存在し、


が成立する[1]。

よってラプラス作用素は、合同変換に対して不変な微分演算子の中で、自明なもの(=恒等的に0を対応させる微分演算子)を除けば最も簡単なものである。

 
拡散の物理理論において、ラプラス作用素は(ラプラス方程式を通じて)平衡の数学的記述に自然に現れる[2]。具体的に、u が化学濃度のような適当な量の平衡密度であるとき、u の滑らかな境界を持つ領域 V を通る流束が、V に流入も漏出も無いとすれば、0 であるから


と書ける。ただし、 は領域 V の境界に対して外側を向く単位法ベクトルである。発散定理により


は領域 V が滑らかな境界を持つ限りにおいて成り立つから、これにより


が導かれる。方程式の左辺はラプラス作用素である。ラプラス作用素それ自身は拡散方程式によって記述されるような、科学密度の流入や漏出を表す点を含む非平衡拡散に対する物理的解釈を持つ。

φ が電荷分布 q に付随した電位を記述するものとすると、電荷分布自身は φ のラプラシアンとして


 
(1)
で与えられる。これはガウスの法則の帰結である。実際、V が任意の滑らかな領域ならば、電場 の電束に関するガウスの法則により、(単位当たりの)電荷


になる。ただし、最初の等号は静電場は静電位の勾配に等しいという事実を用いた。発散定理により、


が成り立ち、これは任意の領域 V に対して成り立つことから (1) を得る。

同じ説明によって、重力ポテンシャルのラプラシアンが質量分布となることが導かれる。電荷や質量の分布が与えられていてそれらに付随するポテンシャルは未知ということはよくあることである。適当な境界条件の下でポテンシャル函数を求めるということは、ポワソン方程式を解くことに同じである。

物理学においてラプラス作用素が現れる別な理由は、領域 U における方程式 ∆f = 0 の解はディリクレエネルギー汎函数を停留させる函数


となることである。これを見るために f: U → Rは函数で、函数 u: U → R は U の境界上で消えていると仮定する。このとき


が成り立つ(ただし、最後の等号はグリーンの第一恒等式(英語版)を用いた)。この計算により、∆f = 0 ならば E は f の周りで停留する。逆に E が f の周りで停留するならば変分法の基本補題(英語版) により ∆f = 0 である。

二次元のラプラス作用素は x, y を xy-平面上の標準直交座標として


で与えられる。

極座標

三次元では様々な座標系がラプラシアンを記述するために広く用いられる。

直交座標系

円筒座標系

球面座標系

一般の曲線座標系(英語版)

N 次元球座標系において、r を正の実数をとる半径、θ は単位球面 SN−1 の元として、パラメータ表示 x = rθ ∈ RN をすれば


と書ける。ただし、∆SN−1 は球ラプラシアンとも呼ばれる (N−1)-次元球面上のラプラス=ベルトラミ作用素である。二つの球対称微分項は


と書いても同じことである。一つの帰結として、SN−1 ⊂ RN 上で定義される函数の球ラプラシアンは へ延長した函数の通常のラプラシアンとして計算することができて、それは半直線に沿って定数(つまり、斉零次の斉次函数)になる。