1回に限らず奇数回の半ひねりを入れた帯はすべて同相である(ただしひねりの回数が異なれば3次元空間での連続的な変形だけで移りあうことは無い)。半回転のひねりの入れ方にも時計周りと反時計回りがあるので、回数が同じでも左手系と右手系の2つがあることになる。回数が同じでも左手系と右手系の2つがあることになる。の帯の基本群は円周の基本群と同じ無限巡回群となる。よってメビウスの帯は単連結でない。

数学的には、メビウスの帯は連結・コンパクトで向き付け不可能な種数1・境界成分数1の2次元多様体(曲面)であるといえる。向き付け不可能とは表と裏の区別をつけることができないということである(単側性ともいう)。例えばメビウスの帯のある部分に(裏側にもインクがにじむように、あるいは帯が透明な素材でできていると考えて)「あ」という文字を書き、それを帯に沿って1周させて元の位置に戻すと、文字が反転して鏡像になってしまう。一般に曲面が向き付け不可能であることは、その曲面にメビウスの帯が含まれていることと同値となる。メビウスの帯は境界(近傍がユークリッド半平面[2]と同相な点の集合のことで、帯の端の部分)を持っているが、その個数は1つであり、2つの境界成分を持つひねりの無い通常の帯(アニュラス)とは異なる。

メビウスの帯は3次元ユークリッド空間 R3 に埋め込むことができ、媒介変数 r , t (-1≦r≦1 ,0≦t≦π)を使えば




と表示することができる。r =0とおいたときの閉曲線はメビウスの帯の中央を通る線でセンターラインと呼ばれる(座標空間上ではxy平面上の半径2の円となる)。r = -1 , 1の線が帯の両端にあたる。[3]

位相幾何学的には上のように媒介変数表示されたものと同相な位相空間をすべてメビウスの帯という。通常のメビウスの帯は半回転のひねりを1回だけ入れたものを考えるが、1回に限らず奇数回の半ひねりを入れた帯はすべて同相である(ただしひねりの回数が異なれば3次元空間での連続的な変形だけで移りあうことは無い)。半回転のひねりの入れ方にも時計周りと反時計回りがあるので、回数が同じでも左手系と右手系の2つがあることになる。メビウスの帯は通常の帯とは同相にならない。

メビウスの帯は、帯の幅を狭める写像を使えばそのセンターラインとホモトピー同値になる。ホモトピー同値であれば基本群が同型になるが、センターラインは前述のように円周になっているので、半回転のひねりの入れ方にも時計周りと反時計回りがあるので、回数が同じでも左手系と右手系の2つがあることになる。の帯の基本群は円周の基本群と同じ無限巡回群となる。よってメビウスの帯は単連結でない。[4][5]

また、メビウスの帯は前述のように1つの境界成分を持っているが、その境界成分に円板を貼り合わせると実射影平面(向きつけ不可能で種数1・境界成分数0の曲面)となる。逆に言えば、メビウスの帯は実射影平面から開円板を取り除いて得られる曲面ということになる。そのためある曲面と実射影平面の連結和をとることを「メビウスの帯を貼り付ける」と表現することがある。[6]

実際にメビウスの帯をつくるときは長方形の短い端同士を180°ひねって貼りあわせればよいが、これは数学的には2つの辺を同一視して得られる商空間を考えていることになる[7][8]。

長方形に対して(三角形分割して)全体が同調するように向きを与えると、向かい合う辺同士には逆の向きが導かれる(長方形ABCDの辺ABについてAからBへの向きが導かれれば、辺CDに対してはCからDへの向きが導かれる)。そこで、片方の辺からもう片方の辺への、向きを保存する同相写像を考え、それによって移りあう点を同一視して得られる商空間を考えると、これがメビウスの帯になる(貼り合わせに使わなかった辺は帯の境界となる)。向きを逆にする同相写像を使って同一視を行った場合は、向かい合う辺がそのまま貼り合わされたことになるので、商空間はメビウスの帯ではない通常の帯になる。

また、3次元ユークリッド空間内の円筒


を考え、C上の点(x , y , z)と(-x , -y , -z)を同一視して得られる商空間を考えると、これもやはりメビウスの帯となる[9]。

実際にメビウスの帯をつくってはさみで平行に切断すると以下のような性質を持っていることがわかる。直感に反したこれらの現象は子供向けの手品として演じられることもあり[10]、マーティン・ガードナーは、メビウスの帯がパーティー用の出し物として紹介されている最初の文献は1881年にパリで発行されたガストン・ティサンディエルによる科学遊びについての本だとしている[11]。1904年には「アフガン・バンド」という名前がついたが、その由来は不明である[11]。

180°ひねってつくったメビウスの帯をセンターラインで切断すると、輪は2つに分かれずに大きな1つの輪になる。この輪は720°ひねられた状態で表裏が分かれており、つまりメビウスの帯ではない。
帯の幅1/3のところを切ってゆくと、輪を2周したところでちょうど切り終わる。こうすると大きな720°ひねられた輪と小さなメビウスの帯が1つずつでき、それらがホップ絡み目状に絡まっている[12]。
540°ひねってつくられたメビウスの帯をセンターラインに沿って切ると、三葉結び目状の帯が1本できる[13]。