この予想の解決に大きな役割を担ったのはリチャード・S・ハミルトンが導入したリッチフローという偏微分方程式である。これはもともとハミルトンが熱伝導を記述するために考案したものだがシン=トゥン・ヤウが幾何化予想解決につながると考えハミルトンに研究を促したもので、19世紀の数学者グレゴリオ・リッチ=クルバストロの名を冠するのは彼が自分の弟子のトゥーリオ・レヴィ=チヴィタと共に書いた論文で導入したことに由来する、リッチフローは以後数学のみならず物理学まで広く使われることになるテンソルの概念を基盤としている。
リッチフローは前述の通りもともと熱伝導を表すものである。ハミルトンとヤウのアイディアはこれを用いて多様体の曲率を表そうというものである。しかし曲率は熱と比べて非常に複雑な対象である[3]。ハミルトンはどんな滑らかな多様体でもリッチフローを持つことを証明した[4]。
しかし、リッチフローには特異点という計算不可能な点を産み出すことがあるという問題があった(=リッチフローの特異点問題)。ハミルトンは解決を試み幾つかの特異点を消すことに成功はしたものの、最終的な解決はグリゴリー・ペレルマンを待つことになる。
幾何化予想(geometrization conjecture)は、ウィリアム・サーストン(William Thurston)により、閉(closed) 3-次元多様体の分類のプログラムとして、1980年に提案された。幾何化の目的は、3-次元多様体を基本的なブロックに分解し、一つ一つのブロックでの幾何学的構造を特定できるような分解を見つけるプログラムであり、「常に基本ブロックへの分解が可能であろう」という予想を、サーストンの幾何化予想という。また、幾何化予想は、ポアンカレ予想の一般化となっており、グリゴリー・ペレルマン(Grigory Yakovlevich Perelman)により、リッチフローを使ったポアンカレ予想の証明の際にも使用された。
3-次元多様体(もしくは、短く 3-多様体)は、局所的に 3次元の写像により記述される、つまり、小さな領域では通常の 3次元ユークリッド空間となるような位相空間のことを言う。しかし、3次元多様体の全体を、3次元空間の部分集合と考えることは一般にはできない。このことは 2次元で考えるとで明らかとなる。2次元の球面(英語版)(sphere)(つまり、曲面)は、局所的には 2次元の写像により拡張することができる(通常の地図もそのような平面のひとつである)。しかし、一度に 2次元のユークリッド平面上に、2-球面の全体を表すことはできない。この 2次元の例の 3次元での写像の類似物が(多様体を被覆する各々の開近傍どうしの交わり上の)座標変換であり、3次元多様体全体を決定する。
座標変換が可能(座標変換は連続であったり、微分可能であったり、無限回微分可能であったりする)か否かが、より高次元では問題となるが、次元 3 のときは該当せず、3-次元多様体の特別な性質を持っていると言える。詳しくは、数学的には各々の̺3-次元位相多様体(topological 3-manifold)の上には、一つの微分可能構造を持つ 3-次元多様体でしかあり得ないということ言うことができる。また、3-次元多様体の研究で、トポロジーの方法と微分幾何学の方法は組み合わせることができる。これを扱う分野は、(統一されて)3-次元幾何学、3-次元トポロジーと呼ばれる。
3-次元幾何学とトポロジーの目的は、閉じた(つまり、境界のない)3-次元多様体全体の分類し理解することである。2-次元多様体の場合と比較して、閉 3-次元多様体の数は非常に多いので、この問題は難しい。
ウィリアム・サーストンによる幾何化予想(幾何化プログラム)の提案は、3-次元多様体をうまく分解して、各々の部分が固有な幾何学を持ち、固有の幾何学はこの各々の部分のトポロジカルな構造を特徴付けることにより、上記の分類を導くという提案である。