これらすべての予想を、有理数体 Q に替えてより一般の体、例えば(もともとの予想であり、最も重要な場合である)代数体や局所体、あるいは(素数 p に対するp-元体 Fp 上の有理函数体 Fp(t) の有限次拡大体であるような)函数体に対して定式化することができる。

ラングランズ・プログラム(英: Langlands program)は、代数的整数論におけるガロア群の理論を、局所体およびそのアデール上で定義された代数群の表現論および保型形式論に結び付ける非常に広汎かつ有力な予想網である。同プログラムは Langlands (1967, 1970) により提唱された。

非常に広い脈絡において、既存の概念を用いて、ラングランズプログラムは構築される。これには例えば、それより少し前にハリッシュ=チャンドラ(英語版)と Gelfand (1963) が定式化していたカスプ形式の哲学や、半単純リー群に関するハリシュ=チャンドラの手法及び結果、セルバーグの跡公式などが含まれる。

初めこそ非常に新しかったラングランズの研究も、技術的に深められる中で、豊かに体系立った仮説的な構造(いわゆる函手性)を伴って数論との直接的な繋がりを提示するものとなった。

例えば、ハリッシュ=チャンドラの仕事において、半単純(あるいは簡約)リー群に対してできることは、任意の代数群に対してできるはずであるという原理を見ることができる。従って、その手法というのは、既に知られていたモジュラ形式論における GL(2) や、後から認識されるようになった類体論における GL(1) などの、ある種の低次元リー群が果たす役割を、少なくとも一般に n > 2 に対する GL(n) についての考察を明らかにすることであるということができる。

カスプ形式の概念の出所は、モジュラー曲線上のカスプのみならずスペクトル論においても(アイゼンシュタイン級数からの連続スペクトル(英語版)と対照を成す)離散スペクトルとも見ることができる。より大きなリー群に対してカスプ形式を考えることは、放物型部分群(英語版)の数が膨大になるため、より技巧的な扱いを要する。

こういった手法の何れにおいても技術的な近道となる方法はなく、しばしば本来帰納的でとりわけレヴィ分解(英語版)に基づいているが、その分野は昔も今も非常に多くのことが要求される[1]。

モジュラー形式の側からは、例えばヒルベルトモジュラー形式(英語版)、ジーゲルモジュラー形式(英語版)、テータ級数などの例があった。

ラングランズ予想の述べた方は様々に異なった方法があり、それらは密接に関連しているが、それらの同値性については明らかなことではない。

ラングランズプログラムの出発点は、二次の相互律を一般化したアルティンの相互律であると考えられる。アルティンの相互律は、ガロワ群が可換であるような代数体のガロワ拡大に適用して、L-函数をガロワ群の一次元表現に対応させ、さらにそれら L-函数がある種のディリクレ L-級数やヘッケ指標から構成されるより一般の級数(つまり、リーマンゼータ函数のある種の対応物)と同一視できることを主張するものである。これら種々の異なる L-函数の間の具体的な対応が、アルティンの相互律を構成しているのである。

非可換なガロワ群やその高次元表現に対しても、L-函数は自然な方法で定義することができる(アルティン L-函数)。

ラングランズの考察は、アルティンの主張をより一般の仮定の下で定式化することを許すような、ディリクレ L-函数の真の一般化を求めることであった。

ヘッケ(英語版)は既に、ディリクレ L-函数を保型形式(C の上半平面上で定義される正則函数である種の函数等式を満たすもの)に関連付けていたが、ラングランズはそれを(有理数体 Qのアデール環 A 上で定義される一般線型群GL(n, A) の無限次元既約表現の一種である)保型尖点表現に対して一般化した。(Q のアデール環というのは、Q の任意の完備化を一斉に扱ったようなものである)。

ラングランズは、保型 L-函数をその保型表現に対応させ「任意のアルティンのL-函数が、代数体のガロワ群の有限次元表現から生じることと、保型尖点表現から生じることとは等しい」と予想した。これをラングランズの「相互律予想」という。一口に言えば、相互律予想は簡約代数群の保型表現とラングランズ群からL-群への準同型との間の対応を与えるものである。この相互律は、ラングランズ群や L-群の定まった定義がないために、いくつものバリエーションがある。局所体上での相互律は、局所体上の簡約代数群の既約許容表現のL-パケット(英語版)の径数付けを与えることが期待される。例えば、実数体上での相互律は実簡約代数群の表現のラングランズ分類(英語版)であり、大域体上では保型形式の径数付けを与える。

函手性予想の主張するところは、L-群の適当な準同型が(大域体の場合の)保型形式や(局所体の場合の)表現の間の対応を与えることが期待されるということである。簡単にいえば、ラングランズの相互律予想は函手性予想のうちで簡約代数群が自明である特別の場合である。

ラングランズは函手性の概念を、一般線型群 GL(n) の代わりに他の連結簡約代数群を用いることができるように一般化した。さらにラングランズは、そのような群 G に対してラングランズ双対群 LG を構成して、G の任意の保型尖点表現と LG の任意の有限次元表現に対し、ある種の L-函数を定義した。ラングランズの予想の一つは、この L-函数が既知の L-函数函数等式を一般化したある種の函数等式を満足することを主張する。

こうしてラングランズは、非常に一般な「函手性原理」を定式化するに至る。これは、二つの簡約代数群とそれらに対応する L-群の間の(素性の良い)準同型が与えられたとき、これらの群の保型表現はその L-函数に対して整合的な仕方で関連することを予想するものである。この函手性予想からは、これまでにあった全ての予想が系として導かれる。これは誘導表現(英語版)の構成の特質である(もっと従来からの保型形式論において「持ち上げ(英語版)」と呼ばれていたもので、特別な、従って(表現の制限(英語版)が反変的であるのに対して)共変的であるような場合が知られていた)。直接的な構成を明示的に述べることが試みられたが、いくらか限定的な結果が得られただけであった。

これらすべての予想を、有理数体 Q に替えてより一般の体、例えば(もともとの予想であり、最も重要な場合である)代数体や局所体、あるいは(素数 p に対するp-元体 Fp 上の有理函数体 Fp(t) の有限次拡大体であるような)函数体に対して定式化することができる。

ドリンフェルトのアイデアに従ってローモンの提唱した、いわゆる幾何学的ラングランズプログラムは、通常のラングランズプログラムを幾何学的に定式化しなおして、単に既約表現だけを考える以上のものを関連付けようとして生じたものである。単純な場合だと、代数曲線のエタール基本群(英語版)の l-進表現を、その曲線上のベクトル束のモジュライスタック(moduli stack)上で定義された l-進層の導来圏の対象に関連付ける。