結合のバネ定数

速度論的同位体効果(そくどろんてきどういたいこうか)は、化学反応において反応物の原子の1つを同位体で置き換えた場合に起こる反応速度の変化を指す。

化学結合の生成・開裂に関与する部位の原子を同位体で置き換えると、反応速度は大きく影響を受ける。この速度変化は1次の同位体効果と呼ばれる。一方、置き換えが反応に直接関与しない部位で行われた場合の速度変化はより小さく、これは2次の同位体効果と呼ばれる。従って、速度論的同位体効果の大きさは反応機構を推定するのに使うことができる。同位体効果は反応の律速段階に最も観測されやすい。もし反応のある段階が律速でないならば、同位体の置き換えによる効果は現れにくい。

同位体効果は質量比の違いが大きい場合により顕著に現れる。例えば、水素を重水素で置き換えると質量は2倍になるが、炭素12を炭素13で置き換えた場合の質量増加は 8% にしか過ぎない(この例では質量数は共に 1 amu 増加している)。12C−H 結合を含む反応の速度は一般的に 12C−D 結合のものと比べると6から10倍の速さであるが、13C−H で置き換えた場合にはおよそ1.04倍にしかならない。

同位体の置き換えは様々な形で反応速度に影響を及ぼす。多くの場合、原子の質量変化は電子配置にはほとんど関係しないが、形成している化学結合の振動数に影響を与える。この観点から速度差が生じる原因の説明ができる。より重い原子を含む結合は、古典物理学的にはより低い振動数を持ち、量子論的にはより低いゼロ点エネルギーを持つ。ゼロ点エネルギーが低いと結合を開裂させるのにより多くのエネルギーが必要になり、すなわち結合を切断するための活性化エネルギーはより高くなる。従って、観測される反応速度は小さくなる(アレニウスの式を参照)。

ある場合には、量子学的トンネル効果によって、より軽い同位体についてさらなる増速が観測される。通常、この現象はトンネル効果が十分に得られるほど軽い水素原子にのみ見られる。

水素/三重水素の置き換えに対する水素/重水素の置き換えの効果の比はスウェイン式によって予測される。

速度論的同位体効果の検討を行う1つの方法は、二原子分子を解析するものである。原子Aと原子B間の結合の基準振動振動数 ν は、これを調和振動子で近似すると

ν
=
1
2
π
k
μ
{displaystyle u ={rac {1}{2pi }}{sqrt {rac {k}{mu }}}}
ここで k は結合のバネ定数、μ は A−B 系の換算質量で、

μ
=
m
A
m
B
m
A
+
m
B
{displaystyle mu ={rac {m_{A}m_{B}}{m_{A}+m_{B}}}}
である(mi は原子 i の質量)。量子力学的に、n 次の振動数のエネルギーは次の式で与えられる。

E
n
=
h
ν
(
n
+
1
2
)
{displaystyle E_{n}=h u left(n+{rac {1}{2}} ight)}
すなわち、ゼロ点エネルギー E0 は換算質量の増加に伴って減少する。ゼロ点エネルギーが低い場合、結合の開裂に必要な活性化エネルギーを超えるにはより多くのエネルギーを必要とする。

炭素−水素結合を炭素−重水素結合に置き換えるとき k は変化しないが、換算質量 μ が異なる。C−H を C−D に変える場合の換算質量は約2の比で変化する。つまり、C−D 結合の振動数は C−H 結合のおよそ
1
/
2
=
0.71
{displaystyle 1/{sqrt {2}}=0.71} 倍となる。これは炭素12を炭素13で置き換えるときよりも大きな変化である。

ある化学反応が逐次反応(A(原料)→B→C→D→E(生成物)のように、流れ作業のように逐次的に反応が進行する反応のこと)の時、この逐次反応の速さ(原料から生成物が出来るまでの反応速度)は最も反応速度が小さい段階に支配される。 この反応段階を律速段階という。

零点エネルギー(れいてんエネルギー、英: zero-point energy)あるいはゼロ点エネルギーとは、絶対零度においても原子が不確定性原理のために静止せずに一定の振動をする場合のエネルギーである。

零点エネルギーは量子力学の系における最も低いエネルギーである。基底状態のエネルギーと言いかえることもできる。量子力学では、すべての粒子には波動性を持っているため、基底状態であっても振動した状態にあり、零点エネルギーというエネルギーを持つことになる。結果として、絶対零度であっても振動していることになる。たとえば、液体ヘリウムは零点エネルギーの影響で、大気圧中ではどんなに温度を下げても固体になることはない。

零点エネルギーの考えは、1913年のドイツにおいて、アルバート・アインシュタインとオットー・シュテルンによって生み出された[1]。この考えは1900年に書かれたマックス・プランクの式を元にしている[2]。

 零点振動れいてんしんどう、ゼロ点振動とも言う、Zero-point motion)とは、絶対零度においても原子が不確定性原理のために静止せずに振動していることである。ヘリウムが絶対零度近傍でも固化しないのは、この零点振動が原因である(圧力を加えると固化する)。固体では格子振動が起こっている。

ゼロイン設定というのは、この距離だけ離れた対象に照準を合わせて撃った時、照準を合わせている場所にキチンと飛んでいく、という設定です。