積分変換の表
名称
記号
t1
t2
u1
u2
フーリエ変換
フーリエ正弦変換
フーリエ余弦変換
ハートレー変換
メリン変換
両側ラプラス変換
ラプラス変換
ワイエルシュトラス変換(英語版)
ハンケル変換
アーベル変換(英語版)
ヒルベルト変換
ポアソン核
恒等変換
逆変換に対する積分の極限において、上の表における c は変換関数の性質に依存する定数となる。例えば、ラプラス変換あるいは両側ラプラス変換に対し、c は変換関数の零点の実部のうち最大のものよりも必ず大きい定数となる。
本項では主に、実数全体で定義された関数に対して定義される積分変換を扱うが、より一般な群上で定義された関数に対してもその積分変換を定義することが出来る。
円周群上で定義された函数(つまり周期関数)を用いた場合、積分核は二重周期関数となる。円周上の関数による畳み込みは巡回畳み込みである。
位数 n の巡回群(これを Cn や Z/nZ で表す)の上で定義された関数を用いた場合、積分核は n × n 行列となり、畳み込みは巡回行列に対応する。